

Vapor Intrusion Mitigation

Engineering controls for indoor air protection of large commercial structures

Agenda:

- Sub-slab communication testing
- Layout and Design <u>active</u> SSD systems
- Project Summary

Sub-slab communication testing – preliminary steps

Identify possible sources of short circuiting such as:

- Cracks in concrete slab
- Poorly sealed concrete around utility conduit and plumbing

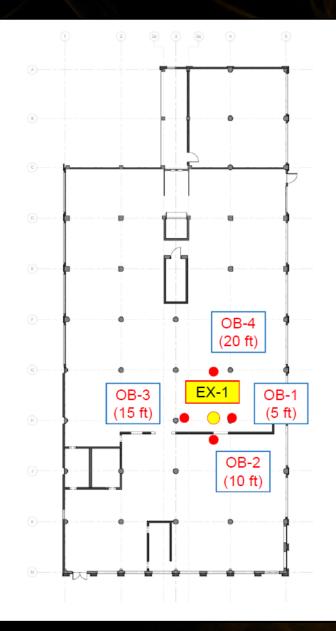
Sub-slab communication testing - preliminary steps

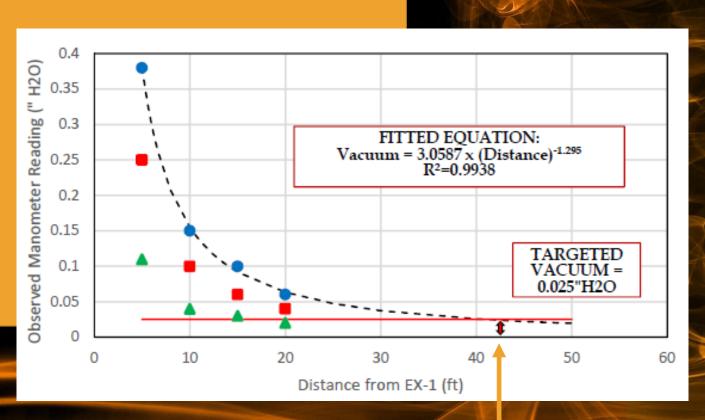
Sealing concrete and sources of short circuiting:

- Cement grout may be necessary in large cracks and fissures
- Low VOC polyurethane caulk in smaller slab cracks and around entry point of pipes and utilities

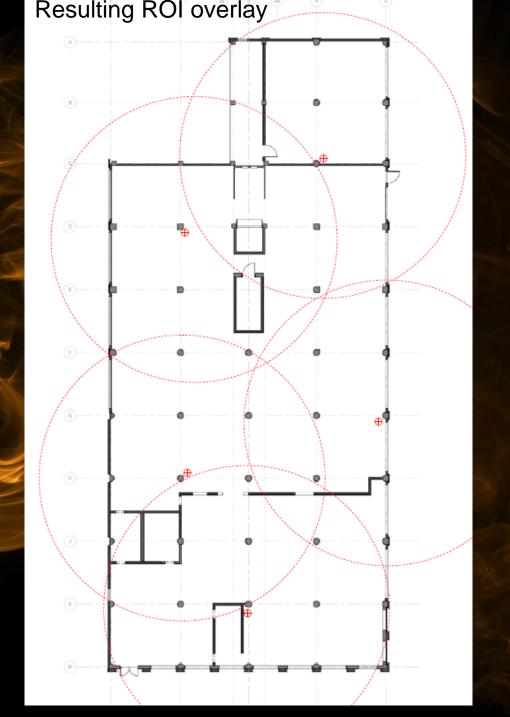
Sub-slab communication testing

Vacuum extraction testing


Determining the potential ROI

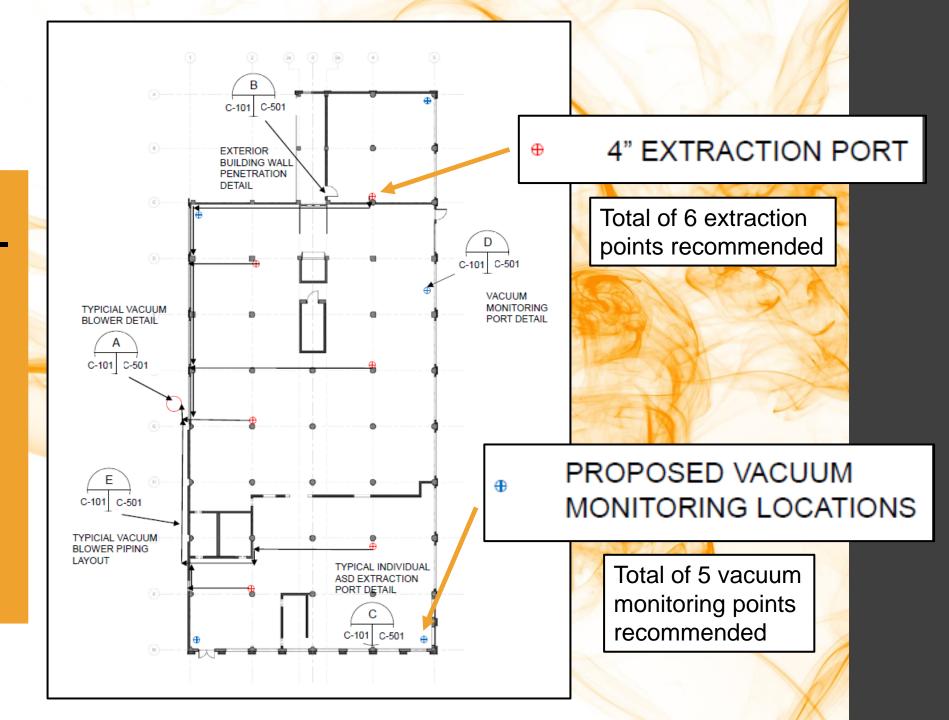


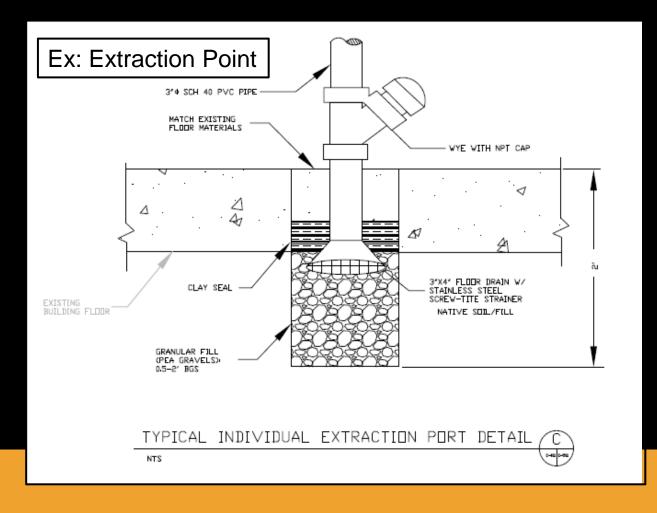
TEST RESULTS IN SUB-SLAB


Well ID:	EX-1	OB-1	OB-2	OB-3	OB-4						
Purpose:	Extraction	Observation									
Offset Distance (ft):	0	5	10	15	20						
Applied Vacuum	Observed Vacuum Response (inH ₂ O)										
3.4		0.11	0.04	0.03	0.02						
6		0.25	0.1	0.06	0.04						
7	_	0.38	0.15	0.1	0.06						

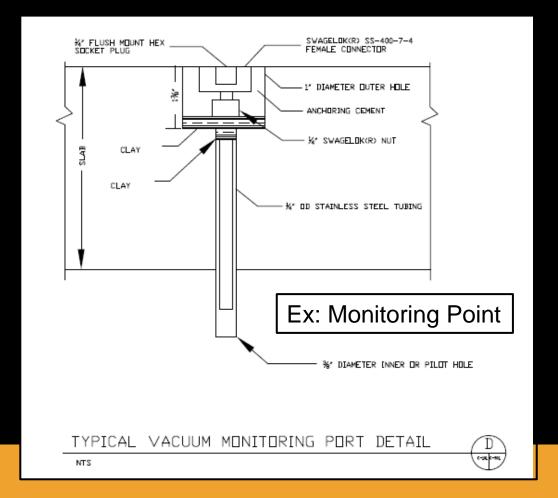
ROI determination

ESTIMATED RADIUS OF INFLUENCE (At 0.025" H₂O)



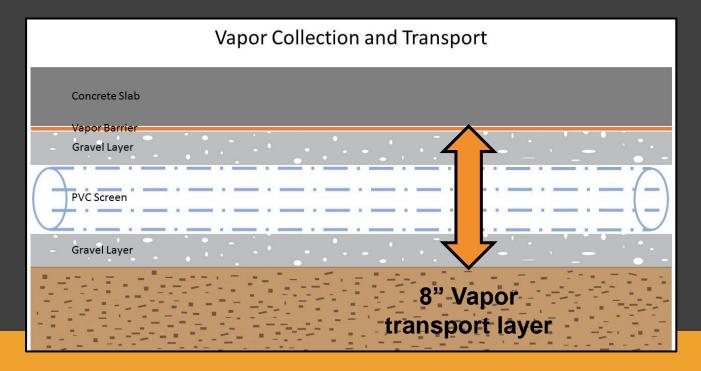


SSDS Layout and Design


Existing Structures-SSDS Layout and Design

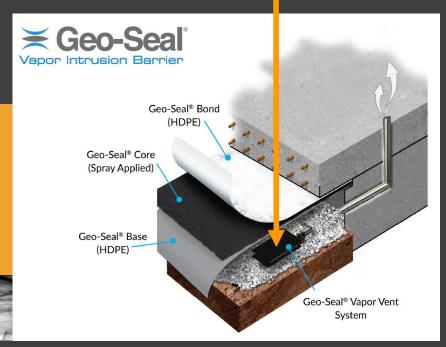
- ROI as determined by subslab communication testing
- Structural and aesthetic considerations

Existing Structures -SSDS Layout and Design


Sub-Slab Vapor Collection Lines

- Typically 4 inch screened PVC (ex. PVC Sch 40, 0.010 screen)
- Custom screen slotting may be required with long collection line runs

New Construction -SSDS Layout and Design


Sub-Slab Vapor Collection Lines

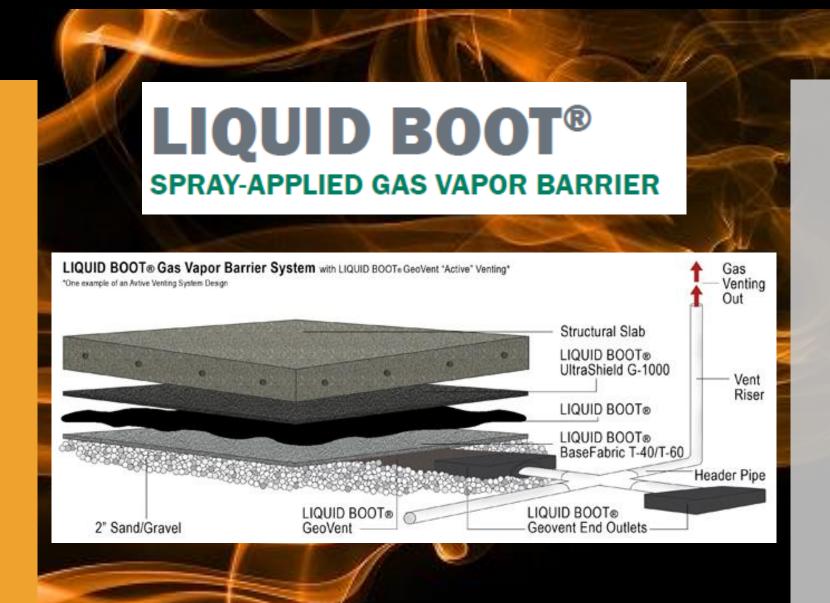
New Construction -SSDS Layout and Design

Installed with a minimum of 2 inches of gravel above and below collection lines to facilitate vapor transport

ALTERNATIVE - Low profile, 1 inch rectangular collection pipe is also available

** Reduces vapor transport layer to 5"

Vapor Barrier - Options


SHEETING installed beneath concrete slab pour

Vapor Barrier - Options

SPRAY-ON vapor barrier applied beneath concrete slab pour

Blower Selection: Types and General Features

Inline Rotary Fan

Radon fan

- Low vacuum
- Low air flow

Centrifugal Blower

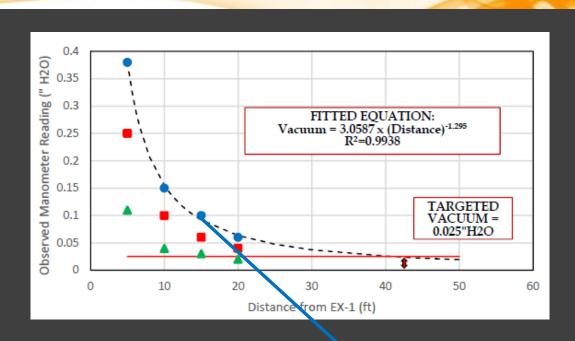
Cincinnati fan

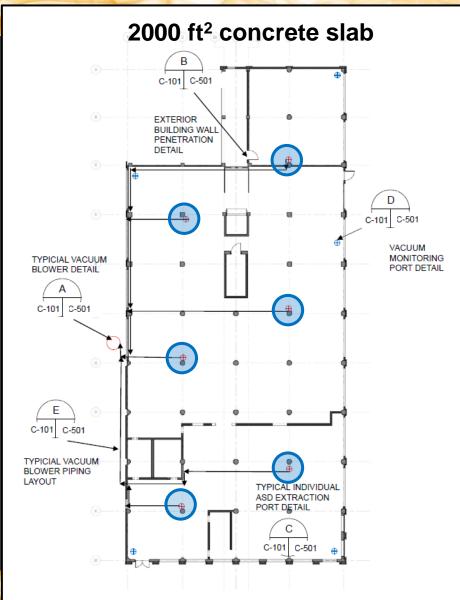
- Moderate vacuum
- Moderate air flow

Regenerative Blower

Rotron blower

- Low vacuum
- High air flow


Positive Displacement Blower


Roots blower

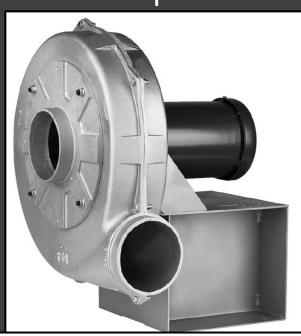
- High vacuum
- High air flow

Blower Selection: Site requirements and energy efficiency

EX-1					
				Temperature	Air Flow
Applied Vacuum	Air Velocity	Diameter	Air Flow Rate		Rate
("H2O)	(fpm)	Pipe (in)	(acfm)	(°F)	(scfm)
3.4	1238	2	27.0	55	27.5
6	2346	2	51.2	55	51.7
7	3568	2	77.8	55	78.4

Blower requirements:

- Approx 80 scfm x
 6 extraction
 points = 480
 scfm total
- Adding a 20%
 safety and
 expansion factor
 → 575 scfm
- B) Capable of efficient, constant operation at
 → 7+ inches
 H2O vacuum

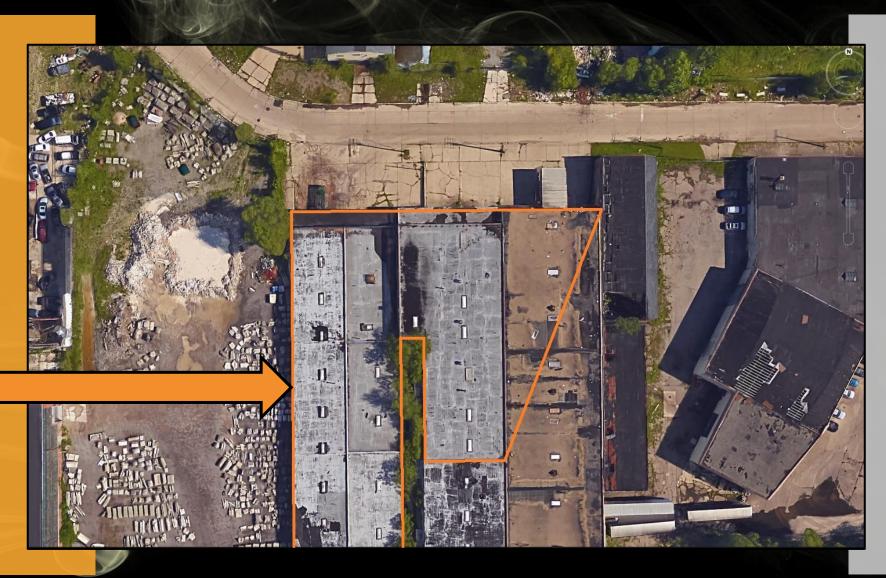

Blower Selection

Requirements

- > 575+ scfm = moderate air flow
- > 7"+ static pressure = moderate pressure

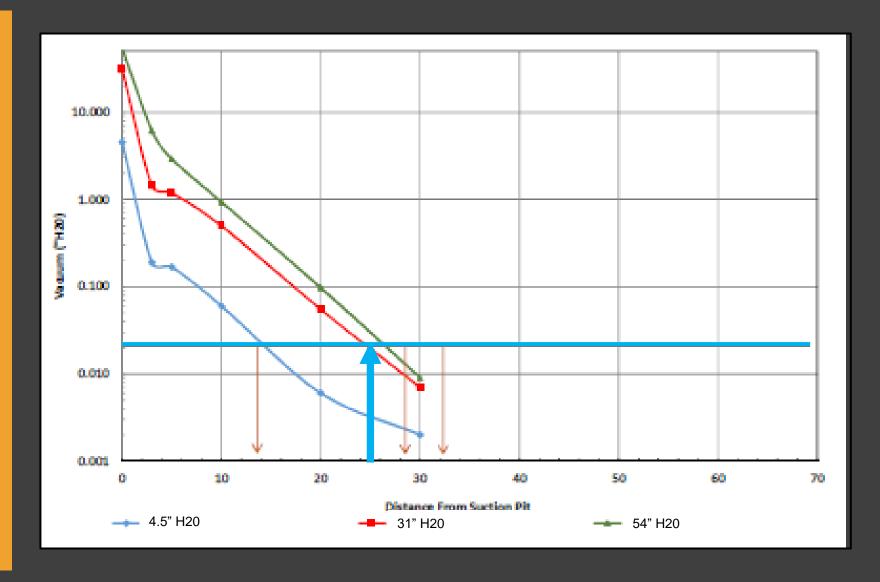
Centrifugal Blower

PB SERIES DIRECT DRIVE RATING TABLES at 3450 RPM


CFM and BHP at Static Pressure Shown Ratings at 70°F., .07 <u>5 Dens</u> ity, Sea Level																		
MODEL	NOMINAL WHEEL	NOMINAL	1" SP		2" SP		3" SP		4" SP		5" SP		6" SP		7" 91		8" SP	
NO.	DIA. & WIDTH	INLET DIA.	CFM	BHP	CFM	BHP	CFM	BHP	CFM	BHP								
PB-8	7 x 2 ⁷ / ₁₆ 8 x 2 ³ / ₄	4" 4"	280 344	.30 .36	228 292	.28 .33	138 228	.26 .28	122	.23								
PB-9	8 x 2 ³ / ₄ 8 ¹ / ₂ x 2 ³ / ₄ 9 x 2 ⁷ / ₈	5" 5" 5"	388 435 493	.39 .46 .52	341 385 445	.36 .41 .48	285 324 384	.32 .37 .42	156 243 310	.25 .33 .37	196	.31						
	10 ¹ / ₄ x 3 BC 9 ³ / ₄ x 2 ⁷ / ₈ 10 ⁵ / ₈ x 2 ⁵ / ₈	5" 5" 5"	511 549 592	.56 .81 .84	463 501 552	.50 .76 .78	404 449 509	.45 .71 .72	344 395 463	.42 .66 .66	283 335 415	.38 .60 .59	211 258 360	.33 .51 .52	291	.44	141	.31
PB-10A	9 x 2 ⁷ / ₈ 10 ¹ / ₄ x 3 BC 9 ³ / ₄ x 2 ⁷ / ₈	6" 6" 6"	576 605 710	.70 .79 1.02	510 547 658	.65 .72 .96	425 479 594	.58 .66 .89	325 399 517	.50 .60 .82	163 299 428	.37 .53 .72	149 314	.43 .59	109	.42		
	11 x 3 BC 10 ⁵ /8 x 2 ⁵ /8 11 x 2 ³ /4	6" 6" 6"	729 826 830	1.06 1.39 1.42	687 763 780	1.01 1.30 1.33	638 699 727	.95 1.23 1.23	580 632 670	.88 1.15 1.15	511 559 607	.81 1.06 1.06	425 476 537	.71 .96 .97	306 361 450	.59 .83 .87	307	.70
	11 ¹ / ₂ x 2 ⁷ / ₈ 12 x 2 ⁷ / ₈	6" 6"	884 921	1.52 1.93	836 886	1.45 1.89	780 846	1.38 1.84	718 801	1.30 1.78	652 750	1.22 1.70	582 691	1.14 1.61	506 622	1.04 1.51	414 540	.92 1.39
PB-12A	11 x 3 BC 10 ⁵ /8 x 2 ⁵ /8 11 x 2 ³ /4	7" 7" 7"	877 1062 1155	1.10 1.62 2.00	807 989 1068	1.04 1.53 1.85	729 899 974	.96 1.42 1.71	642 795 873	.88 1.29 1.56	543 681 762	.79 1.15 1.40	419 553 636	.69 .99 1.23	181 378 487	.51 .78 1.04	281	.78
	11 ¹ / ₂ x 2 ⁷ / ₈ 12 x 2 ⁷ / ₈ 13 x 3 ¹ / ₄ BC	7" 7" 7"	1266 1307	2.39 2.61	1183 1225	2.28 2.46	1092 1139	2.14 2.30	997 1052	2.00 2.15	900 965	1.85 2.00	798 876	1.69 1.86	686 784	1.51 1.72	547 681	1.30 1.56
	13 X 3 1/4 BC 12 1/4 X 2 7/8 13 X 3 1/4	7" 7" 7"	1297 1363 1464	2.61 2.92 3.24	1233 1287 1388	2.51 2.76 3.08	1164 1202 1306	2.40 2.58 2.92	1093 1114 1222	2.29 2.40 2.77	1021 1025 1139	2.17 2.22 2.61	947 936 1058	2.06 2.06 2.47	871 845 978	1.96 1.90 2.32	791 748 897	1.84 1.74 2.17

Site Summary

Site Summary – overview


- Former manufacturing facility
- Currently used as warehouse
- CVOC impacts to soil & GW
- 45,000 ft² target area for sub-slab depressurization

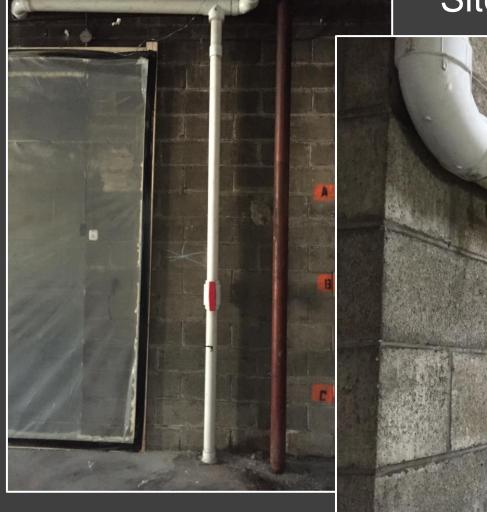
Site Summary – communication testing

ROI:

- Agency requires sub-slab negative pressure >/= 0.02" H20
- ROI of 25 ft used to design installation layout

Site Summary – Layout

17 extraction
points at 25 ft ROI
required to
sufficiently cover the
target
depressurization
area


Site Summary – SSD System

PD BLOWERS

- 1) Roots URAI 36 Blower Skid
- 2) Roots URAI 24 Blower Skid
- 3) Vapor carbon treatment required prior to discharge

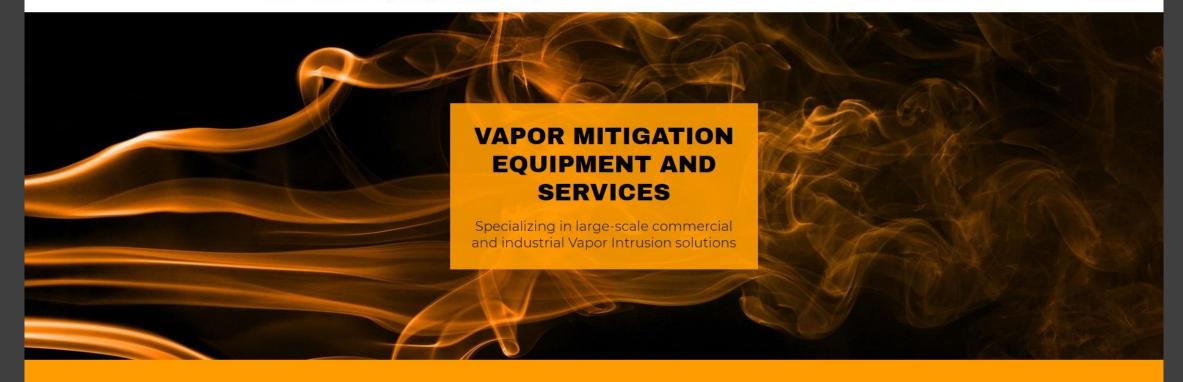
Site Summary – System Installation Logistics

Extraction point -> conveyance line

Conveyance line → blower

VaporEmergency.com

(833) NO VAPOR


(833) NO VAPOR

Home

Our Tean

Vapor Mitigation Systems

Expert Installation

ABOUT US